Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927905

ABSTRACT

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases, including acute respiratory distress syndrome (ARDS), capillary leak syndrome, and COVID19. Paracrine signals are enriched in the lung and are critically important in regulating the homeostasis of the functional pulmonary microvasculature. Here, we employed single-cell RNA-sequencing (scRNAseq) to study ligand and receptor interactions in the native human lung microvascular niche, and identified soluble factors that are critical in endothelial integrity. The scRNAseq data reveals a total of 47 cell populations consisting of five vascular endothelial subtypes in human lungs, including general capillary EC, aerocyte capillary EC (EC aCap), arterial EC, pulmonary venous EC, and systemic venous EC. Using EC aCap as a signal receiving core (Receptors) and the putative adjacent cell types (alveolar fibroblast, ATI, ATII, pericyte, plasma cell, etc.) in the EC aCap niche as senders (Ligands), we identified that SLIT2-ROBO4, ANGPT1-TIE1, ADM-RAMP2, VEGFD-KDR, and BMP5-BMPR2 are the top specific and abundant pairs in the niche. Immunostaining and ELISA assays confirmed their spatial information and secretion level. Furthermore, upon treatment with these ligands, real-time resistance recorded using an electric cell-substrate impedance sensing (ECIS) system revealed that VEGFD, ANGPT1 (angiopoietin 1), and ADM (adrenomedullin) could markedly increase the electrical resistance of human lung microvascular, arterial, and venous endothelial cells, suggesting their strong impact on the endothelial barrier function. Deciphering the cell-cell soluble signals that improve endothelial integrity in human lungs lays the foundation for uncovering the pathogenesis of pulmonary vascular disorders and the development of ex vivo functional lung vasculature.

SELECTION OF CITATIONS
SEARCH DETAIL